Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2260257

ABSTRACT

More than three years ago, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused the unforeseen COVID-19 pandemic with millions of deaths. In the meantime, SARS-CoV-2 has become endemic and is now part of the repertoire of viruses causing seasonal severe respiratory infections. Due to several factors, among them the development of SARS-CoV-2 immunity through natural infection, vaccination and the current dominance of seemingly less pathogenic strains belonging to the omicron lineage, the COVID-19 situation has stabilized. However, several challenges remain and the possible new occurrence of highly pathogenic variants remains a threat. Here we review the development, features and importance of assays measuring SARS-CoV-2 neutralizing antibodies (NAbs). In particular we focus on in vitro infection assays and molecular interaction assays studying the binding of the receptor binding domain (RBD) with its cognate cellular receptor ACE2. These assays, but not the measurement of SARS-CoV-2-specific antibodies per se, can inform us of whether antibodies produced by convalescent or vaccinated subjects may protect against the infection and thus have the potential to predict the risk of becoming newly infected. This information is extremely important given the fact that a considerable number of subjects, in particular vulnerable persons, respond poorly to the vaccination with the production of neutralizing antibodies. Furthermore, these assays allow to determine and evaluate the virus-neutralizing capacity of antibodies induced by vaccines and administration of plasma-, immunoglobulin preparations, monoclonal antibodies, ACE2 variants or synthetic compounds to be used for therapy of COVID-19 and assist in the preclinical evaluation of vaccines. Both types of assays can be relatively quickly adapted to newly emerging virus variants to inform us about the magnitude of cross-neutralization, which may even allow us to estimate the risk of becoming infected by newly appearing virus variants. Given the paramount importance of the infection and interaction assays we discuss their specific features, possible advantages and disadvantages, technical aspects and not yet fully resolved issues, such as cut-off levels predicting the degree of in vivo protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Pandemics , Antibodies, Viral , Antibodies, Neutralizing
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2253412

ABSTRACT

Millions of people have been vaccinated with Gam-COVID-Vac but fine specificities of induced antibodies have not been fully studied. Plasma from 12 naïve and 10 coronavirus disease 2019 (COVID-19) convalescent subjects was obtained before and after two immunizations with Gam-COVID-Vac. Antibody reactivity in the plasma samples (n = 44) was studied on a panel of micro-arrayed recombinant folded and unfolded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and 46 peptides spanning the spike protein (S) and by immunoglobulin G (IgG) subclass enzyme-linked immunosorbent assay (ELISA). The ability of Gam-COVID-Vac-induced antibodies to inhibit binding of the receptor-binding domain (RBD) to its receptor angiotensin converting enzyme 2 (ACE2) was investigated in a molecular interaction assay (MIA). The virus-neutralizing capacity of antibodies was studied by the pseudo-typed virus neutralization test (pVNT) for Wuhan-Hu-1 and Omicron. We found that Gam-COVID-Vac vaccination induced significant increases of IgG1 but not of other IgG subclasses against folded S, spike protein subunit 1 (S1), spike protein subunit 2 (S2), and RBD in a comparable manner in naïve and convalescent subjects. Virus neutralization was highly correlated with vaccination-induced antibodies specific for folded RBD and a novel peptide (i.e., peptide 12). Peptide 12 was located close to RBD in the N-terminal part of S1 and may potentially be involved in the transition of the pre- to post-fusion conformation of the spike protein. In summary, Gam-COVID-Vac vaccination induced S-specific IgG1 antibodies in naive and convalescent subjects in a comparable manner. Besides the antibodies specific for RBD, the antibodies induced against a peptide close to the N-terminus of RBD were also associated with virus-neutralization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Epitopes , Antibodies, Neutralizing , Antibodies, Viral , Protein Subunits , Spike Glycoprotein, Coronavirus/metabolism , Antibody Formation , Immunoglobulin G
3.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2264296

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has been causing the COVID-19 pandemic since December 2019, with over 600 million infected persons worldwide and over six million deaths. We investigated the anti-viral effects of polyphenolic green tea ingredients and the synthetic resveratrol analogue 3,3',4,4',5,5'-hexahydroxy-trans-stilbene (HHS), a compound with antioxidant, antitumor and anti-HIV properties. In the TCID50 assay, four out of nine green tea constituents showed minor to modest cell protective effects, whereas HHS demonstrated the highest reduction (1103-fold) of the TCID50, indicating pronounced inhibition of virus replication. HHS was also a highly effective inhibitor of SARS-CoV-2 proliferation in VeroE6 cells with an IC50 value of 31.1 µM. HSS also inhibited the binding of the receptor-binding domain (RBD) of the spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor (RBD-ACE2) binding with 29% at 100 µM and with 9.2% at 50 µM indicating that the SARS-CoV-2 inhibitory effect might at least in part be attributed to the inhibition of virus binding to ACE2. Based on the chemical similarity to other polyphenols, the oral bioavailability of HHS is likely also very low, resulting in blood levels far below the inhibitory concentration of EGCG against SARS-CoV-2 observed in vitro. However, administration of HHS topically as a nose or throat spray would increase concentrations several-fold above the minimal inhibitory concentration (MIC) in the mucosa and might reduce virus load when administered soon after infection. Due to these promising tissue culture results, further preclinical and clinical studies are warranted to develop HHS as an additional treatment option for SARS-CoV-2 infection to complement vaccines, which is and will be the main pillar to combat the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Resveratrol/pharmacology , Pandemics , Protein Binding
4.
JAMA Oncol ; 8(11): 1694-1696, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2034691

ABSTRACT

This cohort study assesses the capacity of passive immunization and tixagevimab and cilgavimab to inhibit interaction between receptor-binding domains and angiotensin-converting enzyme 2 in patients with hemato-oncologic diseases.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Neoplasms/drug therapy
5.
Allergy ; 77(8): 2431-2445, 2022 08.
Article in English | MEDLINE | ID: covidwho-1985600

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. METHODS: We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. RESULTS: PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. CONCLUSION: The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin G , Pandemics/prevention & control , Rabbits , Spike Glycoprotein, Coronavirus/immunology
6.
Allergy ; 77(11): 3408-3425, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1886637

ABSTRACT

BACKGROUND: Antibody-based tests are available for measuring SARS-CoV-2-specific immune responses but fast T-cell assays remain scarce. Robust T cell-based tests are needed to differentiate specific cellular immune responses after infection from those after vaccination. METHODS: One hundred seventeen individuals (COVID-19 convalescent patients: n = 40; SARS-CoV-2 vaccinees: n = 41; healthy controls: n = 36) were evaluated for SARS-CoV-2-specific cellular immune responses (proliferation, Th1, Th2, Th17, and inflammatory cytokines, activation-induced marker [AIM] expression) by incubating purified peripheral blood mononuclear cells (PBMC) or whole blood (WB) with SARS-CoV-2 peptides (S, N, or M), vaccine antigens (tetanus toxoid, tick borne encephalitis virus) or polyclonal stimuli (Staphylococcal enterotoxin, phytohemagglutinin). RESULTS: N-peptide mix stimulation of WB identified the combination of IL-2 and IL-13 secretion as superior to IFN-γ secretion to discriminate between COVID-19-convalescent patients and healthy controls (p < .0001). Comparable results were obtained with M- or S-peptides, the latter almost comparably recalled IL-2, IFN-γ, and IL-13 responses in WB of vaccinees. Analysis 10 months as opposed to 10 weeks after COVID-19, but not allergic disease status, positively correlated with IL-13 recall responses. WB cytokine responses correlated with cytokine and proliferation responses of PBMC. Antigen-induced neo-expression of the C-type lectin CD69 on CD4+ (p < .0001) and CD8+ (p = .0002) T cells informed best about the SARS-CoV-2 exposure status with additional benefit coming from CD25 upregulation. CONCLUSION: Along with N- and S-peptide-induced IL-2 and CD69 neo-expression, we suggest to include the type 2 cytokine IL-13 as T-cellular recall marker for SARS-CoV-2 specific T-cellular immune responses after infection and vaccination.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , Cytokines/metabolism , Immunity, Cellular , Interleukin-13 , Interleukin-2 , Leukocytes, Mononuclear/metabolism , SARS-CoV-2 , Vaccination
8.
Vaccines (Basel) ; 10(3)2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1715835

ABSTRACT

BACKGROUND: Prophylactic vaccination against infectious diseases may induce a state of long-term protection in the otherwise healthy host. However, the situation is less predictable in immunocompromised patients and may require adjustment of vaccination schedules and/or basic therapy. METHODS: A patient in full remission of multiple myeloma since the last three years and on long-term maintenance therapy with pomalidomide, a drug inhibiting angiogenesis and myeloma cell growth, was vaccinated twice with Comirnaty followed by two vaccinations with Vaxzevria. Seroconversion and SARS-CoV-2-specific cellular responses were monitored. RESULTS: No signs of seroconversion or T cellular memory were observed after the first "full immunization" with Comirnaty. Consequently, long-term-maintenance therapy with Pomalidomide was stopped and two additional shots of Vaxzevria were administered after which the patient seroconverted with Spike(S)-protein specific antibody levels reaching 49 BAU/mL, mild S-peptide pool-specific T cell proliferation, effector cytokine production (IL-2, IL-13), and T cellular activation with increased numbers of CD3+CD4+CD25+ T cells as compared to vaccinated and non-vaccinated control subjects. However, despite suspension of immunosuppression and administration of in total four consecutive heterologous SARS-CoV-2 vaccine shots, the patient did not develop neutralizing RBD-specific antibodies. CONCLUSIONS: Despite immunomonitoring-based adjustment of vaccination and/or therapy schedules vaccination success, with clear correlates of protection, the development of RBD-specific antibodies could not be achieved in the immunocompromised patient with current SARS-CoV-2 vaccines. Thus, our report emphasizes the need for improved active and passive immunization strategies for SARS-CoV-2 infections.

10.
Pediatr Allergy Immunol ; 33(2): e13737, 2022 02.
Article in English | MEDLINE | ID: covidwho-1704771

ABSTRACT

BACKGROUND: While children usually experience a mild course of COVID-19, and a severe disease is more common in adults, the features, specificities, and functionality of the SARS-CoV-2-specific antibody response in the pediatric population are of interest. METHODS: We performed a detailed analysis of IgG antibodies specific for SARS-CoV-2-derived antigens S and RBD by ELISA in 26 SARS-CoV-2 seropositive schoolchildren with mild or asymptomatic disease course, and in an equally sized, age- and gender-matched control group. Furthermore, a detailed mapping of IgG reactivity to a panel of microarrayed SARS-CoV-2 proteins and S-derived peptides was performed by microarray technology. The capacity of the antibody response to block RBD-ACE2 binding and virus neutralization were assessed. Results were compared with those obtained in an adult COVID-19 convalescent population. RESULTS: After mild COVID-19, anti-S and RBD-specific IgG antibodies were developed by 100% and 84.6% of pediatric subjects, respectively. No difference was observed in regards to symptoms and gender. Mounted antibodies recognized conformational epitopes of the spike protein and were capable to neutralize the virus up to a titer of ≥80 and to inhibit the ACE2-RBD interaction by up to 65%. SARS-CoV-2-specific IgG responses in children were comparable to mildly affected adult patients. CONCLUSION: SARS-CoV-2 asymptomatic and mildly affected pediatric patients develop a SARS-CoV-2-specific antibody response, which is comparable regarding antigen, epitope recognition, and the ability to inhibit the RBD-ACE2 interaction to that observed in adult patients after mild COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Child , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
11.
Allergy ; 77(1): 230-242, 2022 01.
Article in English | MEDLINE | ID: covidwho-1373783

ABSTRACT

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus/genetics
12.
BMC Pregnancy Childbirth ; 21(1): 587, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1371956

ABSTRACT

BACKGROUND: The coronavirus disease (COVID-19) pandemic has caused ongoing challenges in health services worldwide. Despite the growing body of literature on COVID-19, reports on perinatal care in COVID-19 cases are limited. CASE PRESENTATION: We describe a case of severe acute respiratory distress syndrome (ARDS) in a 36-year-old G5/P2 pregnant woman with morbid obesity, confirmed severe acute respiratory syndrome coronavirus 2 infection, and fulminant respiratory failure. At 28+ 1 gestational weeks, the patient delivered an uninfected newborn. Using ImmunoCAP ISAC® technology, we found no immunoglobulin (Ig) M antibodies, suggesting that no mother-to-child viral transmission occurred during pregnancy or delivery. The maternal respiratory state improved rapidly after delivery; both maternal and neonatal outcomes were encouraging given the early gestational age and fulminant course of respiratory failure in our patient. CONCLUSIONS: The management of ARDS in pregnant women with COVID-19 is complex and requires an individualized, multidisciplinary approach, while considering maternal and fetal outcomes.


Subject(s)
COVID-19 , Cesarean Section/methods , Pneumonia, Viral , Pregnancy Complications, Infectious , Premature Birth , Respiratory Distress Syndrome , SARS-CoV-2/isolation & purification , Adult , COVID-19/complications , COVID-19/diagnosis , Female , Fetal Monitoring/methods , Gestational Age , Humans , Obesity, Morbid/diagnosis , Obesity, Morbid/physiopathology , Patient Care Team/organization & administration , Perinatal Care/methods , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/etiology , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/physiopathology , Pregnancy Complications, Infectious/therapy , Pregnancy Complications, Infectious/virology , Pregnancy Outcome , Premature Birth/etiology , Premature Birth/therapy , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Treatment Outcome
13.
Allergy ; 76(9): 2840-2854, 2021 09.
Article in English | MEDLINE | ID: covidwho-1175022

ABSTRACT

BACKGROUND: First vaccines for prevention of Coronavirus disease 2019 (COVID-19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti-SARS-CoV-2 effect of siRNA both in vitro and in vivo. METHODS: To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS-CoV-2 genes fused with the firefly luciferase reporter gene and SARS-CoV-2-infected cells was used. The most potent siRNA, siR-7, was modified by Locked nucleic acids (LNAs) to obtain siR-7-EM with increased stability and was formulated with the peptide dendrimer KK-46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation - siR-7-EM/KK-46. Using the Syrian Hamster model for SARS-CoV-2 infection the antiviral capacity of siR-7-EM/KK-46 complex was evaluated. RESULTS: We identified the siRNA, siR-7, targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA-modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR-7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR-7-EM/KK-46 in vivo. CONCLUSIONS: Thus, we developed a therapeutic strategy for COVID-19 based on inhalation of a modified siRNA-peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID-19 patients.


Subject(s)
COVID-19 , Dendrimers , Animals , Antiviral Agents , Humans , Peptides/genetics , RNA, Small Interfering/genetics , RNA, Viral , SARS-CoV-2
14.
Sci Immunol ; 6(57)2021 03 04.
Article in English | MEDLINE | ID: covidwho-1148101

ABSTRACT

CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay. Reduced MHC-I binding of mutant peptides was associated with decreased proliferation, IFN-γ production and cytotoxic activity of CD8+ T cells isolated from HLA-matched COVID-19 patients. Single cell RNA sequencing of ex vivo expanded, tetramer-sorted CD8+ T cells from COVID-19 patients further revealed qualitative differences in the transcriptional response to mutant peptides. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through point mutations in MHC-I-restricted viral epitopes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 , Epitopes, T-Lymphocyte , HLA-A Antigens/immunology , Immunity, Cellular , Mutation , SARS-CoV-2 , CD8-Positive T-Lymphocytes/pathology , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , High-Throughput Nucleotide Sequencing , Humans , Interferon-gamma/immunology , Peptides/genetics , Peptides/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
15.
Allergy ; 76(3): 751-765, 2021 03.
Article in English | MEDLINE | ID: covidwho-894724

ABSTRACT

BACKGROUND: SARS-CoV-2 has triggered a pandemic that is now claiming many lives. Several studies have investigated cellular immune responses in COVID-19-infected patients during disease but little is known regarding a possible protracted impact of COVID-19 on the adaptive and innate immune system in COVID-19 convalescent patients. METHODS: We used multiparametric flow cytometry to analyze whole peripheral blood samples and determined SARS-CoV-2-specific antibody levels against the S-protein, its RBD-subunit, and viral nucleocapsid in a cohort of COVID-19 convalescent patients who had mild disease ~10 weeks after infection (n = 109) and healthy control subjects (n = 98). Furthermore, we correlated immunological changes with clinical and demographic parameters. RESULTS: Even ten weeks after disease COVID-19 convalescent patients had fewer neutrophils, while their cytotoxic CD8+ T cells were activated, reflected as higher HLA-DR and CD38 expression. Multiparametric regression analyses showed that in COVID-19-infected patients both CD3+ CD4+ and CD3+ CD8+ effector memory cells were higher, while CD25+ Foxp3+ T regulatory cells were lower. In addition, both transitional B cell and plasmablast levels were significantly elevated in COVID-19-infected patients. Fever (duration, level) correlated with numbers of central memory CD4+ T cells and anti-S and anti-RBD, but not anti-NC antibody levels. Moreover, a "young immunological age" as determined by numbers of CD3+ CD45RA+ CD62L+ CD31+ recent thymic emigrants was associated with a loss of sense of taste and/or smell. CONCLUSION: Acute SARS-CoV-2 infection leaves protracted beneficial (ie, activation of T cells) and potentially harmful (ie, reduction of neutrophils) imprints in the cellular immune system in addition to induction of specific antibody responses.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Lymphocytes/immunology , Neutrophils/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Convalescence , Female , Humans , Logistic Models , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL